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ABSTRACT

This report explains the detailed capabilities, usage, and implementation of the Fortran target language
extension to the SWIG tool. The SWIG+Fortran extension is used to generate Fortran-2003 bindings to
existing C and C++ library codes.

1. OVERVIEW

This document describes how to use SWIG [ 1] to create interfaces to C and C++ data and functions in the
target language of Fortran, a long-lived scientific programming language. The original motivation for adding
the Fortran language to SWIG was to provide an automated means of adapting massively parallel scientific
codes to modern solvers and GPU-accelerated kernels in the Trilinos numerical library package [3]. But
adding Fortran as a SWIG target language has the potential to simplify and accelerate numerous existing
Fortran codes that do not require advanced numerical solvers: it is now tremendously simple to generate
Fortran library modules from existing C and C++ libraries.

SWIG differs from other attempts to couple C/C++ and Fortran in that it is designed to provide C and C++
functionality to Fortran, and not to generically make these two languages (or others like Python) interoperable.
SWIG only parses C and C++ code; it does not parse Fortran code or generate C/C++ interfaces to Fortran
libraries. SWIG assumes that you, the library developer, have an existing, working C/C++ interface that you
wish to adapt to the Fortran target language. This adaptation may include tweaks for ease of use or familiarity
for Fortran users, but it does not require that your library be developed around a central interface language.
This is in contrast to other existing cross-language interoperability tools such as Babel [2].



2. FUNDAMENTAL CONCEPTS

The purpose of running SWIG with the -fortran language option is to generate a Fortran module that
can be used by other Fortran code. This module contains automatically generated code that provides a
Fortran interface to existing C or C++ interfaces. SWIG generates a . £90 Fortran module file, and a separate
_wrap.c or _wrap.cxx file of implementation code that the module must link against.

The C/C++ _wrap file contains simple, flat, C-linkage interface functions that provide access to arbitrarily
complicated C/C++ data and functions. The conversion may be as simple as casting one integer type to
another, or as complicated as allocating a piece of memory and calling a function to translate an object.
These interface functions, which are namespaced with a _wrap prefix, translate the C/C++ data (classes,
enumerations) into simple ANSI C types (integers, structs).

The C function signature of those interfaces is translated to private interface declarations (with a swigc_
prefix rather than _wrap) in the Fortran module to bind (C) functions. These interfaces use only data types
compatible with Fortran 2003’s ISO_C_BINDING features. Those bound interface functions are called by
SWIG-generated Fortran wrapper code that converts C-compatible data types to native Fortran data types.

These two layers of translation allow nontrivial C++ datatypes to be translated to arbitrary Fortran data.
For example, std::string objects can be automatically converted to Fortran character(len=:),
allocatable variables.

Besides translating simple data types, SWIG can generate “proxy classes” in Fortran from C++ classes.
These thin Fortran 2003 “derived type” definitions bind a C++ class instance to a Fortran-friendly object
equivalent.

2.1 NOMENCLATURE

The terminology in C/C++ and Fortran is different enough to be potentially confusing to a user not intimately
familiar with both languages. The author is more familiar with C++ than Fortran but has endeavored to use
the correct Fortran terms when describing the Fortran implementation. The following table presents some
equivalent concepts and names in the two languages:

C/C++ Fortran
struct/class derived type
function procedure

virtual member function type-bound procedure
function that returns void subroutine
function that returns non-void function
overloaded function generic interface
floating point number real

arithmetic type intrinsic type
derived type extended type
function parameters dummy arguments
constexpr variable named constant




2.2 IDENTIFIERS

C and C++ have different rules for identifiers (i.e. variable names, function names, class names) than Fortran.
The following restrictions apply to Fortran that do not apply to C and C++:

e Names may not begin with an underscore
e Names may be no longer than 63 characters
e Names are case insensitive

The Fortran SWIG module implements two mitigation techniques for naming. First, it automatically moves
leading underscores (and any following integers) to the end of the name. Second, it replaces the tails of long
identifiers with a hashed value of the removed characters. If the result is a duplicate of an existing Fortran
symbol, then SWIG will raise an error and inform you of the conflicting name and where it was previously
used. This behavior mirrors that of Java and other statically typed languages.

For class member functions and enumerations, symbol conflicts will not error out but rather ignore the
conflicting symbol and print a warning. This reduces the amount of manual intervention needed to build a
working SWIG wrapper and reflects the behavior of the Go language wrappers. Whether or not a Fortran
name conflict raises an error, the flexible %rename directive can be used to resolve conflicting wrapper names.

Finally, Fortran 2003 has no analog of C++ namespaces: all wrapped symbols are placed in the Fortran
module’s “global” namespace.

2.3 RUNNING SWIG

Suppose that we have a SWIG interface file example. i with the following contents:

/% File: example.i */

%module example

%{

/* include header */

#include "cexample.h"

%3}

%include "cexample.h"

where cexample.h contains the simple function declaration:
int fact(int n);

To generate SWIG Fortran wrappers for this file, run

§ swig -fortran example.i

and SWIG will create two files: a C interface file containing something like

#include "cexample.h"

SWIGEXPORT int _wrap_fact(int const *fargl) {
int fresult;
int argl;
int result;



argl = *fargl;

result = (int)fact(argl);
fresult = result;

return fresult;

}
/% SNIP */

and a Fortran interface file with something like:

module forexample
use, intrinsic :: ISO_C_BINDING
implicit none
public :: fact
private
interface
function swigc_fact(fargl) &
bind(C, name="_wrap_fact") &
result(fresult)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: fresult
integer(C_INT), intent(in) :: fargl
end function
end interface
contains
function fact(n) &
result(swig_result)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: swig_result
integer(C_INT), intent(in) :: n
integer(C_INT) :: fresult
integer(C_INT) :: fargl
fargl = n
fresult = swigc_fact(fargl)
swig_result = fresult
end function
end module forexample

The above contrived example uses different names for the %module declaration, the interface .1 file, and the
wrapped C header .h file to illustrate how these inputs affect the output file names and properties:

e The %module example declaration in the SWIG interface file resulted in the file names
forexample.£90 and the name in module forexample.

e The file name example. i resulted in the C wrapper file by default being named example_wrap.c.

o The #include command was explicitly inserted into the C wrapper file example_wrap.c.

e The %include command in the .i file directed SWIG to parse the header file cexample.h and
generate an interface for the function declaration that it discovered.

The typical convention is to keep these names consistent: almost without exception, the module name
%module example should be reflected in the file name as example.i



In the generated C wrapper code above, int _wrap_fact(int const *fargl) is the wrapper code
generated by SWIG to provide a Fortran-compatible interface with the C function fact; the function
swigc_fact(fargl) interface in Fortran is the exact equivalent of that C function; and the “public” function
fact in the contains section of the Fortran module is the Fortran proxy function generated by SWIG.

Note that since this function takes and returns simple data types, the C and Fortran wrapper functions have
some code that could be easily simplified by hand. (A compiler with optimization enabled automatically
does this, in fact.) However, for more complicated data types, SWIG shows its power by generating complex
expressions that seamlessly translate between C and Fortran data types without requiring user intervention.

2.4 COMPILING A SIMPLE FORTRAN PROGRAM

Several examples are provided in the SWIG source code under Examples/fortran/. In the
barefunctions example, the Fortran main program can be compiled using the following sequence of
commands:

swig -fortran -c++ example.i

$CXX -c example_wrap.cxx

$CXX -c example.cxx -o examplecxx.o

$FC -c example.f90

$FC runme.f90 example.o example_wrap.o examplecxx.o -lstdc++ -o run.exe

Note that since this was a statically linked C++ program, the -c++ option must be passed to SWIG and
-1stdc++ must be passed to the final link command. Also note that the three middle commands, which create
object files, can be executed in any order. Because the swig command generates both bare_wrap.cxx and
bare. £90, it must be first. The final executable command, which links against all three generated object
files, must be last.

2.5 COMPILING MORE COMPLEX FORTRAN/C/C++ PROGRAMS

The figure below shows how C++, SWIG, and Fortran code can be integrated into libraries and linked to
form executables. The file icons are user-written files; circles are executables; flat cylinders are generated
on-disk files; and the final box is the executable. The arrow signifies “generates” or “is used by.”



3. BASIC FORTRAN/C DATA TYPE INTEROPERABILITY

The Fortran SWIG module relies on Fortran 2003’s C interoperability features, both the ISO_C_BINDING
intrinsic module and the specifications of the standard. Every effort has been made to conform to the standard
in the translation layer between C++ and Fortran and to eliminate potential pitfalls of interoperability.

We anticipate that future extensions of Fortran/C interoperability will increase the capability of the SWIG
wrapper interface. For example, the Fortran ISO technical specification TS29113 [5] will greatly expand the
types of arrays and pointers that can be passed between C and Fortran.

However, many features of C and C++ are outside the scope of Fortran’s interoperability features. Even
some features that are interoperable, such as enumerations and structs, have capabilities that do not map
between the two languages. With this SWIG module we attempt to extend the Fortran/C++ mapping as much
as possible, keeping in mind that Fortran and C are inherently different languages.

3.1 FUNDAMENTAL TYPES

SWIG maps ISO C types to Fortran types using the ISO_C_BINDING intrinsic module. The data types fully
supported by C, Fortran, and SWIG are:

C type Fortran type

signed char integer (C_SIGNED_CHAR)
short integer (C_SHORT)

int integer (C_INT)

long integer (C_LONG)

long long integer (C_LONG_LONG)
size_t integer(C_SIZE_T)
float real (C_FLOAT)

double real (C_DOUBLE)

char character (C_CHAR)

References to these basic types are returned as scalar Fortran pointers.

Note that because the C return value does not contain any information about the shape of the data being
pointed to, it is not possible to directly construct an array from a pointed-to value. However, advanced
typemaps can be constructed (and indeed are provided with the SWIG Fortran standard library) that can
return that information or extend the Fortran interface to obtain the additional information needed to return
an array pointer.

3.1.1 OTHER INTEGER TYPES

Fortran has no intrinsic unsigned datatypes, so the specification says to treat unsigned datatypes as their
signed counterparts. Note that this means unsigned char will be wrapped as a Fortran integer by default.

No checking for negativity or boundedness is done when converting the datatypes. In part this is because
intentionally out-of-range values (e.g., static_cast<size_t>(-1)) are often used as sentinels.

A more complete set of typemaps for the full set of integer types available in <stdint.i> can be used by
%include <cstdint>.



3.1.2 BOOLEAN/LOGICAL VALUES

The astute reader may notice the omission of C_BOOL from the above table. Because of the different treatment
of booleans in C and Fortran, guaranteeing the sizes of the bool are equivalent in the two languages does not
guarantee the equivalence of their values. Fortran’s . true. is defined by having the least significant bit set
to 1, whereas C defines it as any nonzero value. So the value 2 would be true in C but false in Fortran. A
special typemap inserts wrapper code to explicitly convert booleans between the two languages.

3.1.3 COMPLEX NUMBERS

Complex numbers (sum of real and imaginary components on the complex plane) are supported natively by
Fortran as the complex datatype, in C99 and higher by the _Complex or complex types, and in C++ by the
std: : complex template class. Each of the three datatypes is specified to have the same data layout as a
two-element array, so they can be reinterpret-cast freely across language barriers.

To enable SWIG translation of complex types to and from Fortran, simply include complex.i for C or C++
support. The following translations are performed automatically:

C type C++ type Fortran type

float _Complex std::complex<float> complex(C_FLOAT_COMPLEX)
double _Complex std::complex<double> complex(C_DOUBLE_COMPLEX)

Arrays of these types can also be transformed seamlessly.

3.1.4 CHARACTERS

Since char¥*, const char[], etc. typically signify character strings in C and C++, the default behav-
ior of these is to convert to native Fortran strings (see the Strings section). To restore the “arithmetic”
behavior of a character type — i.e., you want to make a char * returned by a C function into a Fortran
character (C_CHAR), pointer - you can call an internal macro and apply it to the particular function or
argument you need:

typedef char NativeChar;
%fortran_intrinsic(NativeChar, character, C_CHAR)
%apply NativeChar * { char *get_my_char_ptr };

char *get_my_char_ptr(Q);

3.1.5 REFERENCES

C mutable references are treated as Fortran pointers. Suppose a C function that returns a reference to an array
element at a given index:

double &get_array_element(int x);
This generates the following Fortran interface:

function get_array_element(x) &
result(swig_result)
use, intrinsic :: ISO_C_BINDING
real (C_DOUBLE), pointer :: swig_result
integer(C_INT), intent(in) :: x



type(C_PTR) :: fresult
integer(C_INT) :: fargl

fargl = x

fresult = swigc_get_array_element(fargl)

call c_f pointer(fresult, swig_result)
end function

To set the element at array index 2 to the value 512,

real (C_DOUBLE), pointer :: rptr
rptr => get_array_element(2)
rptr = 512.0d0

Note, and this is very important, that a function returning a pointer must not be assigned; the pointer
assignment operator => must be used.

Unlike mutable references, const references to primitive arithmetic types are treated as values:
const double &get_const_array_element(int x);
will generate

function get_const_array_element(x) &
result(swig_result)
use, intrinsic :: ISO_C_BINDING
real (C_DOUBLE) :: swig_result
integer(C_INT), intent(in) :: x
real (C_DOUBLE) :: fresult
integer(C_INT) :: fargl

fargl = x
fresult = swigc_get_const_array_element(fargl)
swig_result = fresult

end function

which must be called like

real (C_DOUBLE) :: rval
rval = get_const_array_element(2)

Combining the two examples, you could copy the value of element 3 to element 2 with the following code
block:

real (C_DOUBLE), pointer :: rptr
rptr => get_array_element(2)
rptr = get_const_array_element(3)

First the pointer is assigned, then the pointed-to data is assigned.

3.2 STRINGS

A long-standing difficulty with Fortran/C interaction has been the two languages’ representation of character
strings. The size of a C string is determined by counting the number of characters until a null terminator \0
is encountered. Shortening a string requires simply placing the null terminator earlier in the storage space. In



contrast, the historical Fortran string is a sequence of characters sized at compile time: representing a smaller
string at run time is done by filling the storage with trailing blanks. The Fortran intrinsic LEN_TRIM returns
the length of a string without trailing blanks, and the TRIM function is used if necessary to return a string with
those trailing blanks removed. Of course, this definition of a string means 'foo' and 'foo ' are equivalent.

Starting with Fortran 90, strings with an unambiguous size can be dynamically allocated:

allocate(character(len=123) :: mystring)
and the length is given by LEN(mystring).

SWIG injects small helper functions that convert between strings and arrays of characters, which are then
passed through the interface layer to C. Because the actual Fortran string length is passed to C during this
process, character arrays with the null character can be converted to byte objects without unexpected string
truncation.

The default char* typemaps assume that both the input and output are standard null-terminated C strings on
the C++ side, and a variable-length native string on the Fortran side (i.e. any trailing blanks are intentional).
Note that by using null-terminated strings, if a Fortran string has null characters embedded in it, the string
will be truncated when read by C. Thus the function as written is not suitable for passing binary data between
C and Fortran. See byte strings for how to do this.

If a function char* to_string(float f); emits amalloc’d string value, and the output is to be wrapped
by SWIG, use the %newobject feature to avoid memory leaks:

%newobject to_string;
char *to_string(float f);

The Fortran-to-C string translation performs the following steps:

1. Allocates a character array of len(string) + 1

2. Copies the string contents into that array and sets the final character to C_NULL_CHAR

3. Saves the C pointer to the character array using C_LOC and the size to a small SwigArrayWrapper
struct

4. Passes this struct to the C wrapper code, which uses the data pointer.

The C-to-Fortran string translation is similar:

1. Use strlen to save the string length to SwigArrayWrapper.size, and save the pointer to the data;
return this struct to Fortran

2. Call C_F_POINTER to reinterpret the opaque C pointer as a character array

3. Allocate a new string with a length determined by the size member

4. Copy the character array to the new string

5. If the %newobject feature applies, call the C-bound free function.

The intermediate step of allocating and copying an array is one way of circumventing Fortran 2003’s
interoperability specifications, which prohibit using C_LOC on variables with length type parameters. An
alternative method used in some existing C-Fortran interfaces is to define the bind(C) interface with
character(kind=C_CHAR, len=*) as the dummy argument, which is allowed by the standard. This
interface must however be called with a new copy of the string (with C_NULL_CHAR) appended and strlen
must be used on the C++ side to determine the string’s length. (Credit to Richard Weed for pointing out this
alternate solution.)

Finally, note that a warning on char * still applies to Fortran: if a function taking a char * modifies the
contents of that string, the resulting modification will not have any effect on the Fortran string.



3.3 ARRAYS

Array types such as int a[10] and Object b[][2] are, like other SWIG languages, treated as opaque
types. Use the fixed-size array translation capability to interact with fundamental-arrays as built-in native
Fortran arrays.

3.4 BYTE STRINGS

SWIG provides a two-argument typemap for converting fixed-length byte sequences, useful for passing buffers
of binary data. This typemap searches for two consecutive function arguments called (char *STRING,
size_t LENGTH); but like any other SWIG typemap it can be applied to other argument names as well:

%apply (char *STRING, size_t LENGTH) { (const char *buf, size_t len) }
void send_bytes(int dst, const char *buf, size_t len);

can be used in Fortran as:

The function will be passed the actual length of the byte string (9 + 1 + 10) in addition to the raw data,
including the embedded null character. Compare this to

void send_bytes(int dst, const char *buf);

which would treat buf as a C string, use strlen to find its length, and truncate it at the first null character
(for a length of 9).

3.5 CLASSES AND STRUCTS

Each wrapped C++ class or struct produces a corresponding derived type in the wrapper code that holds a
type (C_PTR) that points to an existing C++ class instance. SWIG seamlessly translates these derived type
instances to and from their C++ equivalent.

SWIG wraps classes and structs identically. After all, in C++, the only difference between a struct and
a class is the default access specifier: public for struct and private for class. As with the rest of
SWIG, only public methods and data are wrapped.

Like the other SWIG strongly typed target languages, the compiler enforces type checking between data
types and function arguments in the SWIG-generated Fortran code.

3.6 ENUMERATIONS

Fortran 2003 implements C enumerations using the ENUM, BIND(C) statement. These enumerators are
simply a set of loosely grouped compile-time integer constants that are guaranteed to be compatible with C
enumerators. Unlike C, and C++, all enumerators in Fortran are anonymous. They are simply integers and
cannot be associated with a type.

To associate a C enumeration name with the Fortran generated wrappers, SWIG generates a named constant
with the C enumeration name whose value is the “kind” of the corresponding integer. This value can then be
used as the kind parameter of the integer. The enumeration generated from the C code

enum MyEnum {
RED = 0,
GREEN,
BLUE,
BLACK = -1
3

10



looks like:

enum, bind(c)

enumerator :: RED = 0
enumerator :: GREEN
enumerator :: BLUE
enumerator :: BLACK = -1
end enum

integer, parameter, public :: MyEnum = kind(RED)

These enumerators are treated as standard C integers in the C wrapper code code. In the Fortran wrapper
code, procedures that use the enumeration use the type integer (MyEnum) to clearly indicate what enum
type is required.

Some C++ enumeration definitions cannot be natively interpreted by a Fortran compiler, so these are defined
in the C++ wrapper code and bound as link-time constants in the Fortran wrapper code.

enum MyWeirdEnum {
FOO = 0x12,
BAR = sizeof(int)
};

becomes

integer(C_INT), protected, public, &

bind(C, name="_wrap_MyWeirdEnum_FO0") :: FOO
integer(C_INT), protected, public, &

bind(C, name="_wrap_MyWeirdEnum_BAR") :: BAR
integer, parameter :: MyWeirdEnum = C_INT

SWIG will only automatically wrap enums as native Fortran enumerators under a limited set of circumstances.
The %fortranconst directive can be used to explicitly enable the native (compile-time constant), and
the %nofortranconst directive forces the values to be wrapped as externally-bound C integers (link-time
constant). See the section on global constants for more on this directive.

Class-scoped enumerations are prefixed with the class name:

struct MyStruct {
enum Foo {
Bar = 0
};
3

generates

enum, bind(c)

enumerator :: MyStruct_Foo_Bar = 0

end enum

integer, parameter :: MyStruct_Foo = kind(MyStruct_Foo_Bar)

If using C++11, enum class will scope the enumerations by the enum class’s name:

enum class Foo {
Bar = 0
1

11



becomes

enum, bind(c)

enumerator :: Foo_Bar = 0
end enum
integer, parameter, public :: Foo = kind(Foo_Bar)
and
class Cls {
public:
enum class Foo {
Bar = 0
};
}s
becomes

enum, bind(c)

enumerator :: Cls_Foo_Bar = 0
end enum
integer, parameter, public :: Cls_Foo = kind(Cls_Foo_Bar)

3.7 CONSTANTS

A constant declaration can be wrapped as a Fortran named constant (a compile-time value defined by having
the parameter attribute) or as an externally linked data object. Constants can be declared with:

the SWIG %constant directive,
simple #define macros,
enum values, and

constexpr global variables. The last item is a SWIG-Fortran extension. For an explanation of this
behavior, see the “Compatibility note” under “A brief word about const” in the SWIG documentation.
Note that this list does not include global const data, which is wrapped in the same way as mutable
global data (though without the setter functions).

Native enum values (enum is marked %fortranconst or was determined automatically to be native
compatible) will become enumerators, and the enum type becomes a named constant with value C_INT.

Constants marked with %fortranconst will be rendered as named constants.
Non-native enum values become C-bound external constants.
Constants marked with %fortranbindc also become C-bound external constants.

All other types will generate getter functions that return native Fortran types.

Some compile-time constants can have definitions that are valid C but invalid Fortran. A macro whose
definition cannot be parsed by Fortran can have its value replaced with a simpler expression using the
%fortranconstvalue directive.

The following example shows the behavior of the various rules above:
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%fortranconst fortranconst_int_global;
%fortranconst fortranconst_float_global;

%constant int fortranconst_int_global = 4;
%constant float fortranconst_float_global = 1.23f;

%fortranbindc constant_int_global;
%constant int constant_int_global = 4;
%constant float constant_float_global = 1.23f;

%fortranconstvalue(4) MACRO_HEX_INT;

%inline %{

#define MACRO_INT 4

const int extern_const_int = 4;
#define MACRO_HEX_INT 0x4

%}

will be translated to

integer(C_INT), parameter, public :: fortranconst_int_global = 4_C_INT
real (C_FLOAT), parameter, public :: fortranconst_float_global = 1.23_C_FLOAT
integer(C_INT), protected, public, &

bind(C, name="_wrap_constant_int_global") :: constant_int_global
real (C_FLOAT), protected, public, &
bind(C, name="_wrap_constant_float_global") :: constant_float_global

integer(C_INT), protected, public, &
bind(C, name="_wrap_MACRO_INT") :: MACRO_INT
public :: get_extern_const_int
integer(C_INT), parameter, public :: MACRO_HEX_INT = 4_C_INT

The symbols marked as protected, public, bind(C) have their values defined in the C wrapper code,
where any valid expression can be parsed. The get_extern_const_int wrapper function is a SWIG-
generated getter that returns the external value.

String constants without special characters (a backslash or anything that must be escaped with a backslash)
with a can generally be represented exactly in Fortran:

%fortranconst MSG_STRING;

%inline %{

#define MSG_STRING "This is a string"
%}

will generate

character(kind=C_CHAR, len=*), parameter, public :: MSG_STRING = "This is a string"

3.8 FUNCTION POINTERS

It is possible to pass function pointers between C and Fortran using SWIG. When wrapping, SWIG will
automatically generate abstract interface functions and subroutines for function pointers that have ISO
C-compatible signatures. It then uses those interfaces in the wrapper functions as procedure pointers.
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These abstract interfaces get default names that are not very pretty, so a %$fortrancallback feature has been
introduced to explicitly generate abstract interfaces with a meaningful name and dummy argument names

The following C++ SWIG input:

%fortrancallback("%s") binary_op;
extern "C" {

int binary_op(int left, int right);
3

generates the following interface:

abstract interface
function binary_op(left, right) bind(C) &
result(fresult)

use, intrinsic :: ISO_C_BINDING
integer(C_INT), intent(in), value :: left
integer(C_INT), intent(in), value :: right
integer(C_INT) :: fresult

end function

end interface

This allows C++ functions

%inline %{

typedef int (*binary_op_cb) (int, int);

int call_binary(binary_op_cb fptr, int left, int right);
%}

to generate Fortran functions that take a procedure as an argument:

function call_binary(fptr, left, right) &
result(swig_result)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: swig_result
procedure(binary_op) :: fptr
integer(C_INT), intent(in) :: left
integer(C_INT), intent(in) :: right
! <snip>
end function

Note that Fortran ISO C rules require the given procedure to be defined in Fortran using the bind (C) qualifier,
as in this module-level code:

function myexp(left, right) bind(C) &

result(fresult)
use, intrinsic :: ISO_C_BINDING
integer(C_INT), intent(in), value :: left

integer(C_INT), intent(in), value :: right
integer(C_INT) :: fresult

fresult = left ** right
end function
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3.9 UNUSUAL TYPES

When a modifier such as [] or * is applied to a type, the result is a distinct type: int[3] is distinct from
int*. Some of these resulting types have built-in typemaps for translating to Fortran, but some do not.

Types that do not match any defined typemaps are wrapped with an opaque derived type with an automatically
generated name that starts with SWIGTYPE_. This type-safe placeholder carries a pointer to the value that can
be transferred between functions in the same module.

Most combinations of pointers and references (such as int**, int* const*, int*[3], int*&) are treated
as these opaque pointers. If it’s not possible to define a meaningful typemap for any of these types, you can
use an %inline block to provide a helper function to translate them. For example,

double** get_handle();
will generate a function with the signature

function get_handle() result(swig_result)
use, intrinsic :: ISO_C_BINDING

type (SWIGTYPE_p_p_double) :: swig_result
end function

You could define a function to convert the resulting opaque class into a native Fortran pointer:

%inline %{
double &handle_to_pointer(double **val) {
return **val;

%3}
that would return a native Fortran pointer to the data referenced by the handle:

function handle_to_pointer(val) result(swig_result)
use, intrinsic :: ISO_C_BINDING

real (C_DOUBLE), pointer :: swig_result
class(SWIGTYPE_p_p_double), intent(in) :: val

end function
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4. BASIC C/C++ FEATURES

This section describes the wrapper and proxy code generated by C and C++ language features.

4.1 FUNCTIONS

Functions in C/C++ are procedures in Fortran. Their arguments correspond directly between the two
languages: one argument in the C code requires one argument in the Fortran proxy. (Two exceptions are that
C arguments can be ignored by swig using the %typemap (in, numinputs=0) directive in SWIG, and that
SWIG supports multiple-argument typemaps.) A function in C/C++ with a void return value will translate
to a subroutine in Fortran, and a function returning anything else will yield a Fortran function.

Each function in SWIG has a unique “symbolic name” or symname bound to it. The symname must be
compatible with C linkage, and thus namespaces, templates, and overloads are incorporated into the symname,
but a symname is often just the same as the bare function name.

SWIG will generate a C-linkage wrapper function in the C++ file named _wrap_$symname, where $symname
is replaced with the symname. This wrapper function is responsible for converting the function’s arguments
and return value to and from Fortran-compatible datatypes and calling the C++ function. It also implements
other optional features such as exception handling.

SWIG then creates an interface declaration swigc_$symname, with bind(C, name='_wrap_$symname"').

In the Fortran module, SWIG generates a public procedure $symname that translates native Fortran data types
to and from the C interface datatypes. This interface, and not the swigc_$symname bound function, is the
one used by Fortran application codes.

4.2 FUNCTION OVERLOADING

There is an important exception to the naming scheme described above: function overloading, when two
or more free functions share a name but have different arguments. For each overloaded function signature,
SWIG generates a private procedure with a unique symname. These procedures are then combined under a
separate module procedure that is given a public interface with the original symbolic name. For example, an
overloaded free function myfunc in C++ will generate two private procedures and add an interface to the
module specification:

public :: myfunc

interface myfunc

module procedure myfunc__SWIG_®, myfunc__SWIG_1
end interface

It should be noted that a function that returns void cannot be overloaded with a function that returns anything
else: generic interfaces must be either all subroutines or all functions. The pair of declarations

void cannot_overload(int x);
int cannot_overload(int x, int y);

will generate a SWIGWARN_LANG_OVERLOAD_IGNORED warning and ignore the second function. There are
three ways to mitigate this warning:

1. Silence the warning and not wrap the second function: %warnfilter (SWIGWARN_LANG_OVERLOAD_IGNORED)
cannot_overload;
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2. Ignore the “subroutine” (function that returns void) using %ignore cannot_overload(int x);
3. Transform the int-returning function into a Fortran subroutine using the %fortransubroutine
directive, which converts the return value to an optional argument.

The %fortransubroutine directive can be used to transform any return value (with the current limitation
that the value isn’t a wrapped class) to an optional subroutine argument. For example,

int myfunc(int x, int y);

%fortransubroutine mysub;
int mysub(int x, int y);

generates the function interfaces

function myfunc(x, y) &
result(swig_result)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: swig_result
integer(C_INT), intent(in) :: x
integer(C_INT), intent(in) :: y
end function

subroutine mysub(x, y, swig_result)
use, intrinsic :: ISO_C_BINDING

integer(C_INT), intent(in) :: X
integer(C_INT), intent(in) :: y
integer(C_INT), intent(out), optional :: swig_result

end subroutine
The resulting subroutine can be overloaded with other C++ void-returning functions.

A common use case of %¥fortransubroutine is for C functions that return error codes or other noncritical
information such as the number of items deleted. C++ users should know that a function in Fortran is a
stronger version of a [ [nodiscard]]-marked function (since C++17): ignoring the return value is an error.

4.3 GLOBAL VARIABLES

Global variables in SWIG are wrapped with “getter” and “setter” functions. In the case of a global C++
variable

namespace foo {
extern int global_counter;

}
SWIG will generate functions with interfaces

subroutine set_global_counter(value0)
use, intrinsic :: ISO_C_BINDING
integer(C_INT), intent(in) :: value®
end subroutine

and
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function get_global_counter() &
result(swigf_result)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: swigf_result
end function

Although no type conversion is needed for simple integers, other global data types would require special
wrapper code in these functions.

By default, global C/Fortran-compatible variables are treated the same as more complicated C++ types.
However, the %fortranbindc feature allows natively interoperable types to be directly accessed in the
Fortran code. A SWIG input of:

%fortranbindc global_counter_c;
extern "C" int global_counter_c;

will generate a publicly accessible C-bound variable:

integer(C_INT), public, bind(C, name="global_counter_c") :: global_counter_c

4.4 CLASSES

C++ classes are transformed to Fortran derived types. These types have type-bound procedures that mirror
the C++ member functions. Other SWIG target languages refer to the transformed wrapper classes as “proxy
classes” because they act as a proxy to the underlying C++ class.

The Fortran “proxy class” is effectively a C pointer with memory management metadata and type-bound
accessors. The C pointer is initialized to C_NULL_PTR, and when assigned it can represent a class as a value
(i.e. the local Fortran code has ownership) or by reference. The classes and their implementation are described
in detail in the proxy classes section.

4.5 EXCEPTIONS

By default, a C++ exception will call std: : terminate, abruptly stopping the Fortran program execution.
With the %exception feature, C++ exceptions can be caught and handled by the Fortran code by setting and
clearing an integer flag. The following snippet from the Examples directory illustrates its use in printing and
ignoring an error:

use except, only : do_it, ierr, get_serr

if (ierr /= 0) then
write(®,*) "Got error
ierr = 0

endif

, lerr, , get_serr()

Enabling this exception handling requires %includeing a special file and writing a small exception handler.

%include <std_except.i>

%exception {
// Make sure no unhandled exceptions exist before performing a new action
SWIG_check_unhandled_exception();
try {
// Attempt the wrapped function call
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$action
} catch (const std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what() );
} catch (...) {
SWIG_exception(SWIG_UnknownError, "An unknown exception occurred");

}

%inline %{

#include <stdexcept>
void do_it(int i)

{

if (i < 0) throw std::runtime_error("Bad value");

%3

The above code will wrap (by default) every function call. (The standard SWIG %noexception directive
can be used to selectively disable exception handling.) Before calling the wrapped function, the call to
SWIG_check_unhandled_exception ensures that no previous unhandled error exists. If you wish to wrap
only a few functions with only specific exceptions, use the standard SWIG “throws” typemap.

The error codes (SWIG_RuntimeError, etc.) above will be generated as public Fortran parameter constants
when using the <exception.i> header. Thus you can check for more specific errors as needed:

b = get_from_reference(a)

if (ierr == SWIG_NullReferenceError) then
write(0,*) "'a' must be allocated before passing to 'get_from_reference'"
stop 1

endif

4.5.1 USING EXCEPTIONS IN LARGER PROJECTS OR SOFTWARE LIBRARIES

When exception handling code is used, SWIG generates a few internal data structures as well as two externally
accessible symbols with external C linkage (ierr and get_serr). Fortran bindings are generated to make
the integer and function accessible from the Fortran module.

The names of the integer and string accessor have C linkage and thus must be unique in a compiled program
and to all downstream codes linked against it. Since other translation units might have symbols that share the
default exception handling names, the user can provide custom names before including the exception handling
file. A %rename directive can then reset the Fortran proxy name to something simpler while retaining the
scoped C linkage variable names.

In this example, the C-linkage variables generated will be _scoped_ierr and _scoped_get_serr:
%module foo;

#define SWIG_FORTRAN_ERROR_INT scoped_ierr

#define SWIG_FORTRAN_ERROR_STR scoped_get_serr

%rename (ierr) scoped_ierr;

%rename (get_serr) scoped_get_serr;
%include <std_except.i>
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but because of the %rename directives, they can still be accessed from Fortran with simpler names since they
are “scoped” to the generated module:

use foo, only : ierr, get_serr

4.5.2 EXCEPTIONS WITH MULTIPLE MODULES

If you’re linking multiple modules together (using %import or otherwise), only one of those modules should
define the error integer and accessor by including <std_except.i> or <exception.i>. Every other module
needs to add

%include <extern_exception.i>

before any other module is %imported (or any other exception-related source files are %$included). This
inserts the correct exception macros in the wrapper code and declares (but does not define) the external-
linkage error function and variable. You must also ensure the SWIG_FORTRAN_ERROR_INT macro is correctly
defined before this include if it’s being used upstream.

If you forget to make the above inclusion and an %imported module loads exception. i, a SWIG error
will be displayed with a reminder of what to do. If all of your modules declare extern_exception.i, the
program will fail to link due to the undefined symbols.
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5. PROVIDED TYPEMAPS

There are many ways to make C++ data types interact more cleanly with Fortran types. For example, it’s
common for C++ interfaces take a std: :string when they’re typically called with string literals: the
class can be implicitly constructed from a const char * but can also accept a std: :string if needed.
Since Fortran has no implicit constructors, passing a string argument would typically require declaring and
instantiating a class for that parameter. Instead, like other SWIG languages, Fortran by default integrates
“native” types such as the built-in string and arrays.

5.1 THE STD::STRING CLASS

A special set of typemaps is provided that transparently converts native Fortran character strings to and from
std: :string classes. It operates essentially like the C strings described above: it can transparently convert
strings of data to and from native Fortran strings. This typemap is provided in <std_string.i>.

The default typemaps do not include support for mutable string references; by default they are treated as
unknown class types. To make these references act like pass-by-value strings (where changes to the value in
one language will not make changes in the other), use %apply:

%include <std_string.i>
%apply std::string { std::string& }

5.2 STD::VECTOR

The C++ std: :vector class is defined in the <std_vector.i> interface file along with its basic methods.
Similarly to other statically-typed languages such as Java, the vector class has no automatic conversions to
and from the native Fortran array types.

To be congruent to native Fortran types, the vector wrapper functions use 1-offset indexing by default. That
is, instead of index ® meaning an offset of zero from the start of the array, index 1 indicates the “1st” element
of the array. Also for improved compatibility, native Fortran integers are used for sizing and indexing into the
array.

The built-in std: : vector wrapper class differs from the standard C++ library in that instead of operator[],
assignment and retrieval use set(index, value) and get(index). Similarly, insert, remove, and
erase all use 1-offset Fortran integers rather than iterators.

If changing the indexing offset is abhorrent to you, or you expect your Fortran integers to be 32-bit in app
with vector sizes greater than 2 billion, fear not. Those two features are implemented with %apply typemaps,
so applying the following typemap before instantiating vector<CTYPE> will restore the vector’s natural C++
behavior.

%apply size_t {std::vector<CTYPE>::size_type,
std: :vector<CTYPE>: :size_type index,
std: :vector<CTYPE>: :size_type start_index,
std: :vector<CTYPE>: :size_type stop_index};

5.3 OTHER C++ STANDARD LIBRARY CONTAINERS

Other useful types such as std: :map, std: :set, have no or minimal implementation. Contributions to
these classes (by changes to swig/Library/fortran/std_{cls}.i) will be warmly welcomed.
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5.4 SHARED POINTERS

Like other target languages, SWIG can generate Fortran wrappers to smart pointers to C++ objects by
modifying the typemaps to that object. A smart pointer is an object whose interface mimics a raw C
pointer but encapsulates a more advanced implementation that manages the memory associated with that
pointer. Different libraries provide different names and interfaces to smart pointers, but the common
std: :shared_ptr class (and the less common boost: : shared_ptr) interfaces are provided and can be
easily adapted to other similar “smart pointer” types.

When a shared pointer is copied, the pointed-to object is “shared” by the two shared pointer instances, and a
reference counter (which keeps track of the number of existing shared pointer instances) is incremented. A
shared pointer’s reference count is decremented when its destructor is invoked, or if reset () is called on the
pointer. When the reference count reaches zero, the pointed-to object is deleted.

Wrapping shared pointers with SWIG is as simple as adding the line %shared_ptr(Foo) to the source
file before the definition of class Foo or the wrapping of any function that uses an instance of Foo. That
macro defines all the necessary typemaps to convert a shared pointer to and from a value, raw pointer, or
reference. SWIG does not require that all uses of Foo be as shared_ptr<Foo>: for example, it will correctly
dereference the shared pointer when passing it into a function that takes a const reference. Additionally,
because shared pointer class supports “null deleters” (i.e. when the reference count reaches zero, the pointed-
to data will not be deleted), the code can embed a non-owning reference to the data in a shared pointer. In
other words, it is OK to return const Foo& even when Foo is wrapped as a shared pointer.

5.5 DYNAMIC-SIZE ARRAY TRANSLATION

The <typemaps.i> library file provides a simple means of passing Fortran arrays by reference. It defines a
two-argument typemap (SWIGTYPE *DATA, size_t SIZE) thatis wrapped as a single Fortran argument,
an array of SWIGTYPE values. For functions that accept but do not modify an array of values, the const
version of the signature, (const SWIGTYPE *DATA, size_t SIZE), declares the array as intent (in).

The following example shows how to apply the typemap to two different functions:

%include <typemaps.i>
%apply (SWIGTYPE *DATA, size_t SIZE) { (double *x, int x_length) };
%apply (const SWIGTYPE *DATA, size_t SIZE) { (const int *arr, size_t len) };

void fill_with_zeros(double* x, int x_length);
int accumulate(const int *arr, size_t len);
These functions can then be used in Fortran target code:

real (C_DOUBLE), dimension(10) :: dbl_values
integer(C_INT), allocatable, dimension(:) :: int_values
integer(C_INT) :: summed

summed = accumulate(int_values)

5.6 FIXED-SIZE ARRAY TRANSLATION

The <typemaps.i> file provides an additional typemaps that allows fixed-size Fortran arrays to interact
natively with fixed-size C arrays:
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%include <typemaps.i>
%apply SWIGTYPE ARRAY[ANY] { int global[4] };
%apply SWIGTYPE ARRAY[ANY][ANY] { double[ANY][ANY] };

double cpp_sum(const double inp[3][2]);

%inline %{

int global[4] = {0,0,0,0};
%3

allows the Fortran usage:

integer(C_INT), dimension(4) :: int_values = [1,2,3,4]
real (C_DOUBLE), dimension(2,3) :: dbl_values

int_values(:) = 0
int_values = get_global()

dbl_values(:,:) = 1.0d0
write(*,*) cpp_sum(dbl_values)

Note that Fortran dimensioning is column-major and C/C++ dimensions are row-major, so the dimensionality
of the arrays must be reversed.

5.7 SMART POINTERS

The highly generalized “SWIG smart pointer” functionality, where a class provides a custom operator->
and unary operator¥, is not yet implemented. All C++ operator overloads are currently ignored.

5.8 ARRAY POINTERS

The <std_span.i> library file provides an example of interacting directly with Fortran array pointers. The
std: :span class is proposed for C++20, so this file serves mostly as an example of array translation for other
scientific software libraries that use functionally equivalent classes: storing a simple non-owning reference to
a contiguous array of data.

Returning a std: : span<T> yields a Fortran array pointer, and taking a reference to a span allows a Fortran
array pointer to be set.

#include <std_span.i>

%template() std::span<int>;

std: :span<int> get_array_ptr(Q);

void set_array_ptr(std::span<int>& arr);
void increment(std::span<int> arr);

is usable in Fortran as

integer(C_INT), pointer :: arrptr(:)
arrptr => get_array_ptr(Q)

See the section on pointers and references for cautions on functions returning pointers.
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5.9 INTEGER TYPES

One other note to be made about Fortran interoperability concerns the mismatch between default Fortran
integers and C++’s size_type, which is often used as a function argument. The differing KIND of the
integers requires that users awkwardly cast values when passing into function calls:

This nuisance can be simply avoided by replacing occurrences of C’s size type with the native Fortran integer
type:
%apply int { std::size_t }

Note of course that if the native integer type is 32-bit and the long type is 64-bit, this will prevent any input
larger than 0x7 ££££f£f from being passed as an argument.

24



6. PROXY CLASSES

Each C++ class (with the exception of those wrapped using direct C binding) creates a “proxy class”, a
unique derived type in the Fortran module. Each proxy class holds a single piece of data, a small C-bound
struct SwigClassWrapper, which contains two simple members: a pointer to C-owned memory, and an
enumeration that tracks the ownership of that memory. The proxy class is responsible for tracking ownership
of the C++ class and associating that pointer with the corresponding C++ methods.

To introduce the class translation mechanism, we observe the transformation of a simple C++ class

class Foo {
public:
void bar(Q);
3
into a Fortran derived type
type :: Foo
type(SwigClassWrapper), public :: swigdata

procedure :: bar => swigf_Foo_bar
end type

The proxy classes that SWIG creates, and how it translates different C++ class features to Fortran, are the
topic of this section.

6.1 CONSTRUCTORS

In C++, the allocation and initialization of a class instance is (almost without exception) performed effectively
simultaneously using a constructor. The initialization can be arbitrarily complex, and since the constructor
can be overloaded, the instance can be allocated and initialized by several different code paths. In Fortran,
initialization can only assign simple scalars and set pointers to null.

However, “construction” can be done separately. In SWIG-generated classes, a module procedure with the
same name as the class initializes it:

type(Foo) :: f
type(Foo) :: ¢
f = Foo(Q)

g = Foo(123)

6.2 DESTRUCTORS

Even though the Fortran 2003 standard specifies when local variables become undefined (and are finalized if
they have a FINAL subroutine), support for finalization in many compilers still in active use is not entirely
reliable. Rather than relying on the finalization mechanics to clean up and free a C++ object, destructors for
the C++ wrappers wrapped as a release procedure:

To avoid leaking memory, release should always be called when the proxy class instance is no longer needed.
It will free memory if appropriate and reset the C pointer to NULL. Calling release on an uninitialized
variable (or a variable that has been released) is a null-op.
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6.3 MEMBER FUNCTIONS

SWIG generates unique, private procedure names (generally swigf_{classname}_{funcname} for each
class and function. These procedures are bound to the type. If function overloading is used, “generic’
procedures will be added to the derived type.

>

Type-bound procedures in Fortran proxy classes are treated exactly the same as for native derived types:

integer(C_INT) :: value
type(Foo) :: food
food = Foo(Q)

value = food%get_something()

corresponding to

class Foo {
void do_something();
int get_something(Q);
+;

Function overloading for derived types is implemented using generic interfaces. Each overloaded function
gets a unique internal symname, and they are bound together in a generic interface. For example, if a member
function doit of class Action is overloaded, a generic binding will be generated inside the Fortran proxy
derived type:

procedure, private :: doit__SWIG_0® => swigf_Action_doit__SWIG_O
procedure, private :: doit__SWIG_1 => swigf_Action_doit__SWIG_1
generic :: doit => doit__SWIG_®, doit__SWIG_1

As with free functions, a member function returning void cannot be overloaded with a function returning
non-void.
6.4 MEMBER DATA

SWIG generates member functions for class member data in the same way that it generates free functions for
global variables. Each public member produces a “getter”, and unless the data is marked const, it generates
a “setter”.

For a struct

struct Foo {
int val;

3

the interface to an instance and its data is:
type(Foo) :: f

f = Foo(Q)

value = f%get_val()

As in C++, the construction of Foo() default-initializes member data, so the result of f%get_val() will be
zero immediately after construction.
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6.5 INHERITANCE

Single inheritance in C++ is mirrored by Fortran using the EXTENDS attribute. For classes with virtual
methods, the user should keep in mind that function calls are dispatched through C++. In other words, even
if you call a base-class member function in Fortran that wraps a derived class instance, the correct virtual
function call will be dispatched.

Fortran has no mechanism for multiple inheritance, so this SWIG target language does not support it. The
first base class listed that has not been %ignored will be treated as the single parent class. A warning will be
issued for the base classes that are not used as the parent class.

There is no intrinsic way to dynamic_cast to a daughter class, but if a particular casting operation is needed
a small inline function can be created that should suffice:

%inline %{
Derived &base_to_derived(Base &b) {
return dynamic_cast<Derived &> (b);

%}

(Note that this function will not transfer ownership to the new object. Doing that is outside the scope of this
chapter.)

The implementation of function overloading in the Fortran types is complicated when member functions are
shadowed or overridden in a daughter class. First, Fortran requires essentially that overriding procedures
must have the exact same function signature including the names of the dummy arguments. (This is in
part because Fortran procedures may accept arguments as keywords in addition to positions.) In contrast,
overriding functions in C++ merely require the same parameter types. Second, Fortran does not allow a
procedure in a parent type to be “shadowed” by the extending type as C++ does. Finally, a non-generic
procedure in the parent type cannot be shadowed by a generic procedure. SWIG does its best to detect these
situations and ignore incompatible member functions in the daughter class.

6.6 MEMORY MANAGEMENT

A single Fortran proxy class must be able to act as a value, a pointer, or a reference to a C++ class instance.
When stored as a value, a method must be put in place to deallocate the associated memorys; if the instance
is a reference, that same method cannot double-delete the associated memory. An additional complication
is that C++ functions must be able to send Fortran pointers both with and without owning the associated
memory, depending on the function. Finally, assignment between Fortran classes must preserve memory
association.

Fortran’s “dummy argument” for the return result of any function (including generic assignment) is
intent (out), preventing the previous contents (if any) of the assignee from being modified or deallocated.
In the Fortran-defined factory function

function make_foo() result(fresult)
type(Foo) :: fresult
call fresult%release()
fresult = Foo(1234)

end function

the value of fresult at the start of the function is the default initialized value of Foo, and not (for example)
the left-hand side of a statement when the function’s result is used.

The assignment operator must behave correctly in both of the following assignments, which are treated
identically by the language:
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type(Foo) :: a, b
a = make_foo()
b =a

Note that unlike Python, b is not a pointer to a; and unlike C++, b is not copy-constructed from a. Instead,
a is assigned to b using the assignment (=) operator. Likewise, a is not “constructed” on the second line:
there is no return value optimization as in C++. Instead, make_foo returns a temporary Foo, and that
temporary is assigned to a.

Because these two assignments are treated equally and a temporary is created in only one of them, we have to
be clever to avoid leaking or double-deleting memory.

Ideally, as was done in Rouson’s implementation of Fortran shared pointers [4], we could rely on the FINAL
operator defined by Fortran 2003 to release the temporary’s memory. Unfortunately, only the very latest
compilers (as of 2018, 14 years after the standard was ratified) have full support for the FINAL keyword.

Our solution to this limitation is to have the Foo proxy class store not only a pointer to the C data
(self¥%swigdata¥%cptr) but also a set of state flags (self¥%swigdata%cmemflags) that describes memory
ownership. Currently there are two flags:

o Ownership (the swig_cmem_own_bit in Fortran wrapper code) is true if freeing the wrapper should
destroy and free the corresponding C/C++ memory.

o If ownership of the class instance is being transferred from a function, the rvalue bit is set
(swig_cmem_rvalue_bit).

The crucial trick is to implement an assignment operator that correctly copies, allocates, or moves memory
based on the flags on the left- and right-hand sides, and sets a new memory state on the recipient. By resetting
the state flag in a generic assignment operator, we guarantee that only temporary classes will ever have the
rvalue bit set.

TODO: clarify assignment semantics, detail the %fortran_autofree_rvalue macro

6.7 OPAQUE CLASS TYPES
SWIG’s default Fortran type (the ftype typemap) for generic types such as classes (SWIGTYPE) is:
%typemap (ftype) SWIGTYPE "type($fortranclassname)"”

The special symbol $fortranclassname is replaced by the symbolic name (i.e. the Fortran identifier in the
proxy code) of the class that matches the typemap. For example, if std: : vector<double> is instantiated:

%template(Vec_Dbl) std::vector<double>;
then Vec_Db1, the name of the derived type, will replace $fortranclassname.

Some function signatures may refer to classes that are not wrapped by SWIG. Such arguments or return
values will automatically generate opaque wrapper classes that are used as placeholders for that class. These
placeholders are identical to those used for unusual fundamental types with fundamental types.

6.8 PROXY CLASS WRAPPER CODE

The Fortran wrapper code generated for each function can be extended in multiple ways besides using the £in
and fout typemaps. A specific function can have code prepended to it using the %$fortranprepend macro,
which is a compiler macro for %feature("fortran:prepend"), and appended using %fortranappend,
which aliases %feature (" fortran:append").

For advanced cases, the function or subroutine invocation can be embedded in another layer of wrapping using
the %feature("shadow") macro. The special symbol $action will be replaced with the usual invocation.
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7. ADVANCED DETAILS AND USAGE

This section describes some of the advanced features that underpin the SWIG Fortran wrapping. These
features allow extensive customization of the generated C/Fortran interface code and behavior.

7.1 TYPEMAPS

SWIG Fortran extends the typemap system of SWIG with additional typemaps, modeled after the Java target
language’s typemaps. They provide for translating C++ data to and from an ISO-C compatible datatype, and
from that datatype to native Fortran types. These special typemaps are critical to understanding how SWIG
passes data between Fortran and C++.

7.1.1 ISO C WRAPPER INTERFACE

SWIG-generated Fortran code works by translating C++ data types to simple C types compatible with ISO C
binding, then translating the data types to more complicated Fortran data types. The C-compatible types are
known as the “intermediate layer”.

SWIG Fortran defines two new typemaps to declare the data types used by Fortran and C in the intermediate
layer, and two typemaps for translating the intermediate layer types to and from the final Fortran types.

To pass Fortran-2003 compatible bind (C) or ISO_C_BINDING types between C++ and Fortran, you must
declare a compatible ctype and imtype. The ctype is the C datatype used by the wrapper and intermediate
layer, and imtype is the equivalent Fortran datatype. These datatypes generally must be either arithmetic
types or structs of such types. For example, as described in the Arithmetic types section, the int C type is
compatible with integer (C_INT) Fortran type. However, because Fortran prefers to pass data as pointers,
SWIG defines int* as the ctype for int. Otherwise the imtype would have to be integer (C_INT),
value.

The ctype and imtype each have keywords that are usually required. By default, ctype corresponds to an
output value, i.e. a function return value. Often the input value of a function is a different type (e.g. a pointer
int* instead of a value int). The in keyword allows this to be overridden:

%typemap(ctype, out="int") int
"const int *"

The imtype is used both as a dummy argument and as a temporary variable in the Fortran conversion code.
Because these also may have different signatures, an in keyword allows the dummy argument to differ from
the temporary:

%typemap(imtype, in="integer(C_INT), intent(in)") int
"integer (C_INT)"

7.1.2 FORTRAN PROXY DATATYPE TRANSLATION

The fin and fout typemaps are Fortran proxy wrapper code analogous to the in and out in the C wrap-
per code: they are used for translating native Fortran objects and types into types that can be transmit-
ted through the ISO C intermediate code. For example, to pass a class by reference, the Fortran class
class(SimpleClass) :: self is converted to the corresponding C class via the stored C pointer using
the fin typemap, which is expanded to:

fargl = self%swigdata%cptr
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This argument is then passed into the C function call:
fresult = swigc_make_class(fargl)
and the output is translated back via the fout typemap, which in this case expands to:

swig_result¥%swigdata%cptr = fresult

7.1.3 ALLOCATING LOCAL FORTRAN VARIABLES IN WRAPPER CODES
Advanced SWIG users may know that
%typemap(in) int (double tempval) { /.../ }

is a way to declare a temporary variable tempval in the C wrapper code. The same feature is emulated in
the temp keyword argument of fin and fout. This keyword declares a variable named $1_temp with the
specified type declaration. The ffreearg typemap (analogous to the freearg typemap for C in arguments)
can be used to deallocate or clean up any temporary variables as needed.

7.2 CODE INSERTION BLOCKS

The %insert(section) %{ ...code... %} directive can be used to inject code directly into the C/C++
wrapper file (see the “code insertion blocks” section of the SWIG manual) as well as the Fortran module
file. The Fortran module uses several additional sections that can be used to insert arbitrary extensions to the
module. These section names are based off the Fortran standard’s specification and naming of the components
of a module.

The generated C++ wrapper file has the following sections denoted by {sectionname}

{begin}

{runtime}

{header}

#ifdef __cplusplus
extern "C" {
#endif

{wrapper}

#ifdef __cplusplus
}

#endif

{init}

The generated Fortran module looks like:

{fbegin}

module [MODULE_NAME]
use, intrinsic :: ISO_C_BINDING
{fuse}
implicit none
private
{fdecl}

interface
{finterfaces}

end interface
contains
{fsubprograms}

end module
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7.3 DIRECT C BINDING

It is sometimes desirable to simply expose C functions and types to Fortran. This, for example, is one way to
wrap C libraries with minimal overhead.

7.3.1 GENERATING DIRECT FORTRAN INTERFACES TO C FUNCTIONS

In addition to generating functions with translation code, it is also possible to specify that a function be
directly bound and not wrapped. For this feature to work correctly, all function arguments and return types
must be inherently Fortran/C interoperable, and the function must be either in C code or given C linkage via
a C++ extern "C" block. The %fortranbindc and %nofortranbindc features can enable or disable the
binding feature.

The SWIG code:

%fortranbindc print_sphere;

extern "C" {

// These functions are simply bound, not wrapped.

void print_sphere(const double origin[3], const double* radius);

}

is translated to

subroutine print_sphere(origin, radius) &
bind(C, name="print_sphere™)
use, intrinsic :: ISO_C_BINDING
real (C_DOUBLE), dimension(3), intent(in) :: origin
real (C_DOUBLE), intent(in) :: radius
end subroutine

To bind all functions as native C interfaces, use
%fortranbindc;

This is often useful when coupled with the %fortranconst directive (see the enumerations section).

7.3.2 FUNCTION POINTERS AND CALLBACKS

The %callback feature is redundant and ignored for %$fortranbindc types: a valid function pointer to the C
function can be obtained simply with the c_funptr intrinsic function. Any %fortrancallback directives
in the code will still generate abstract interfaces, but they will simply supplement the direct-bound C code

7.3.3 GENERATING C-BOUND FORTRAN TYPES FROM C STRUCTS

In certain circumstances, C++ structs can be wrapped natively as Fortran bind (C) derived types, so that
the underlying data can be shared between C and Fortran without any wrapping needed. Structs that are
“standard layout” in C++ can use the %fortran_struct feature to translate

struct BasicStruct {
int foo;
double bar;

1

to
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type, bind(C) :: BasicStruct
integer (C_INT), public :: foo
real (C_DOUBLE), public :: bar
end type

Roughly speaking, standard layout structs have no virtual member functions, inheritance, or C++-like
member data. All structs in C are compatible with Fortran, unless they bit have fields or use the C99 feature
of “flexible array members”.

The C binding feature for structs must be activated using a special macro %$fortran_struct:
%fortran_struct(BasicStruct);
In C++, these structs must be “standard layout”, i.e. compatible with C.

Calling %fortran_struct (Foo) inhibits default constructor/destructor generation for the class, and it sets
up the necessary type definitions to treat the struct as a native type.

Every member of the struct must be bind (C) compatible. This is enforced with a separate typemap bindc
that translates the member data to Fortran type members. For example, the basic int mappings are defined
(using macros) as:

%typemap (bindc) int "integer (C_INT)"

%typemap (bindc) int * "type(C_PTR)"

%typemap (bindc) int [ANY] "integer(C_INT), dimension($1_dim®)"
%typemap (bindc) int [] = int *;

The bindc typemap is used when wrapping global constants and enumerations.

7.4 OMITTING OPAQUE CLASSES

Typically when wrapping C++ libraries for Fortran, it’s desirable to expose only a subset of the library’s
functionality and classes. However, even if a class is ignored, functions that use the class will still be wrapped
using an opaque derived type (see unusual types), and it’s not uncommon to %ignore such functions where
possible to minimize the clutter in the Fortran library’s interface. The %fortranonlywrapped feature is
designed to help.

When applied to an identifier, it will ignore any function that accepts or returns a class that’s explicitly ignored
or is forward-declared but not defined. For example, the following input

%fortranonlywrapped overloaded;
%ignore Ignored;
class ForwardDeclared;

void overloaded(Ignored i);
void overloaded(ForwardDeclared f);
void overloaded(int i);

will generate a single Fortran wrapper function, for the one that accepts an integer argument.
Like any other feature, it can be applied globally and disabled on a case-by-case basis:

%fortranonlywrapped;
%nofortranonlywrapped should_be_wrapped;

void not_wrapped(UnknownType*) ;
void should_be_wrapped(UnknownType*);
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7.5 CROSS-LANGUAGE POLYMORPHISM USING DIRECTORS

The “director” capability in SWIG allows C++ classes to be subclassed by a user in the target language
to enable inversion of control through overridden C++ virtual functions. For Fortran, this means that a
SWIG-wrapped derived type can be extended by an application code so that C++ code can send data to a
native Fortran type-bound procedure and receive data back.

Enabling this advanced and still highly experimental feature requires extra SWIG directives, including a
special setup argument in the %module declaration.

%module(directors="1") example
%feature("director") Base;

%inline %{
class Base {
public:
virtual ~Base() {}
virtual int apply(int x) const = 0;

1

int apply(const Base& b, int x) {
return b.apply(x);

%}
This allows a user application to declare an extended type such as:

module mymod
use, intrinsic :: ISO_C_BINDING
use ISO_FORTRAN_ENV
use example, only : Base
implicit none

type, extends(Base), public :: MyDerived
integer(C_INT) :: multiply_by =1
integer(C_INT) :: add_to = 0
contains
procedure :: apply => MyDerived_apply
end type MyDerived
contains

function MyDerived_apply(self, x) &

result(myresult)

use, intrinsic :: ISO_C_BINDING
class(MyDerived), intent(in) :: self
integer(C_INT), intent(in) :: x

integer(C_INT) :: myresult

myresult = x * self¥%multiply_by + self%add_to
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end function
end module

The overridden procedure can be called either from Fortran or through existing C++ library code.

subroutine test_director_int
use director_simple
use director_simple_mod
use, intrinsic :: ISO_C_BINDING
type(MyDerived), target :: myclass

! Allocate and set up callbacks for Base class
call swig_initialize(myclass, source=Base())
myclass¥multiply_by = 2

myclass%add_to = 1

! Direct Fortran call

ASSERT (myclass%apply(10_c_int) == 21_c_int)
! Call through C director

ASSERT (apply(myclass, 10_c_int) == 21_c_int)

call myclass%release()
end subroutine

7.5.1 LIMITATIONS
Currently only fundamental types are supported.

Fortran has much less introspection than Java, Python, and other less static languages. Therefore director
methods can’t automatically detect whether the target language (Fortran) overrides a particular method.
Therefore you must currently override all virtual methods.

A bug in GCC prevents versions before 8 from using the --std=£2003 flag (see GNU bug 84924).

7.6 KNOWN ISSUES

A number of known limitations to the SWIG Fortran module are tracked on GitHub.
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https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84924
https://github.com/swig-fortran/swig/issues/59
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